일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- classification
- 딥러닝
- SSL
- ML
- Vision
- PRML
- CV
- math
- pytorch
- Meta Learning
- 머신러닝
- GAN
- clean code
- nerf
- computervision
- FGVC
- Depth estimation
- 자료구조
- algorithm
- FineGrained
- web
- 알고리즘
- Python
- cs
- nlp
- dl
- 3d
- Front
- Torch
- REACT
- Today
- Total
목록Data Science/Augmentation (2)
KalelPark's LAB
Abstract 기존 방법론들은 training distribution에 적합한 성능을 달성하였지만, 학습된 네트워크는 과적합되기 쉽고, 적대적 공격에 취약합니다. 이러한 문제를 해결하기 위해, Mixed 기반 Augmentation이 대두가 되지만, 이것은 이전에 인지하지 못한 객체를 인지하는데 초점을 두어, 모델에 오히려 오해의 소지를 제안할 수 있습니다. 이러한 문제를 해결하고자, PuzzleMix를 본 논문에서 제안합니다. 그러므로, 주변 환경정보를 활용하는 학습하는 방법론인 PuzzleMix를 제안합니다. 이는 optimal mixing mask와 saliency discounted optimal transport obejective 사이를 최적화하는 방식으로 문제를 해결하고자 합니다. Intr..
GitHub를 참고하시면, CODE 및 다양한 논문 리뷰가 있습니다! 하단 링크를 참고하시기 바랍니다. (+ Star 및 Follow는 사랑입니다..!) https://github.com/kalelpark/Awesome-ComputerVision\ GitHub - kalelpark/Awesome-ComputerVision: Awesome-ComputerVision Awesome-ComputerVision. Contribute to kalelpark/Awesome-ComputerVision development by creating an account on GitHub. github.com Abstract Regional dropout strategies는 계속해서 성능을 향상시켜왔습니다. MixUp, C..