Recent Posts
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- Vision
- nlp
- SSL
- 딥러닝
- cs
- clean code
- Front
- Python
- PRML
- web
- REACT
- classification
- 자료구조
- Torch
- FGVC
- nerf
- CV
- pytorch
- Depth estimation
- ML
- GAN
- math
- 3d
- 알고리즘
- computervision
- FineGrained
- Meta Learning
- dl
- 머신러닝
- algorithm
- Today
- Total
KalelPark's LAB
[CODE] Attention Convd 구현 본문
해당 객체에 Attention을 줘보도록 하겠습니다. :)
CODE
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torchvision.transforms import transforms
trans_main = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean = 0.5, std = 0.5),
])
class ImageAttentionMap(nn.Module):
def __init__(self):
super(ImageAttentionMap, self).__init__()
self.conv_block = nn.Sequential(
nn.Conv2d(in_channels = 3, out_channels = 64, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(inplace = True),
nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(inplace = True),
nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(inplace = True),
nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(inplace = True)
)
self.global_avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(64, 1)
def forward(self, x):
x = self.conv_block(x) # Conv_Block : torch.Size([1, 64, 224, 224])
attention_map = x.clone()
x = self.global_avg_pool(x) # Conv_Block : torch.Size([1, 64, 1, 1])
x = x.view(x.size(0), -1) # x.view : torch.Size([1, 64])
x = self.fc(x)
x = F.sigmoid(x)
attention_weights = self.fc.weight.detach().squeeze()
# attention_weights : torch.Size([1, 1])
attention_weights = attention_weights.view(1, -1, 1, 1)
# attention_map : torch.Size([1, 1])
attention_map = attention_map * attention_weights
attention_map = torch.sum(attention_map, dim=1, keepdim=True)
attention_map = F.relu(attention_map)
attention_map /= torch.max(attention_map)
return x, attention_map
'Data Science > CODE' 카테고리의 다른 글
[CODE] ZipFile 편리하게 다루는 방법 (0) | 2023.05.01 |
---|---|
[ Computer Vision ] Real-Time Depth Estimation CODE (2) | 2023.05.01 |
[CODE] Masking imaging 코드 구현 (0) | 2023.03.29 |
[CODE] Profile 팁 및 라이브러리 소개 및 logging 추천 (0) | 2023.03.26 |
[CODE] Multi-GPU (Ver.2) 활용하기 (0) | 2023.03.21 |
Comments