Recent Posts
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- PRML
- Torch
- Vision
- clean code
- 자료구조
- math
- Python
- ML
- GAN
- CV
- 3d
- dl
- web
- SSL
- 머신러닝
- algorithm
- pytorch
- Depth estimation
- Front
- 알고리즘
- classification
- computervision
- cs
- nerf
- Meta Learning
- FineGrained
- FGVC
- REACT
- nlp
- 딥러닝
- Today
- Total
목록Active Learning (1)
KalelPark's LAB
[논문 리뷰] Learning Loss for Active Learning
Abstract 최근 딥러닝에서모델을 계속해서 발전시키고자 한다면 annotated data가 많이 필요합니다. 이에 대한 한가지 해결방법은 active learning을 하는 것입니다. active learning이란, labeling되지 않은 데이터를 사람이 데이터를 생성하는 것을 말합니다. 본 논문에서는 annotate data를 표기합니다. 본 논문에서는, task에 구애받지 않고, 딥러닝 모델에 효과적으로 적용할 수 있는 새롭고, 단순한 방법을 제기합니다. "loss prediction module"이라고 불리는, small parameteric module을 붙이고, unlabel data의 target에 대한 loss가 어느정도인지 예측하도록 학습합니다. 이러한 묘듈은 모델이 잘못된 예측을 ..
Data Science/Self Supervised Learning
2023. 4. 1. 10:52